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Abstract

In the numerical solution of some boundary value problems by the finite element method (FEM), the unbounded
domain must be truncated by an artificial absorbing boundary or layer to have a bounded computational domain. The
perfectly matched layer (PML) approach is based on the truncation of the computational domain by a reflectionless arti-
ficial layer which absorbs outgoing waves regardless of their frequency and angle of incidence. In this paper, we present the
near-field numerical performance analysis of our new PML approach, which we call as locally-conformal PML, using
Monte Carlo simulations. The locally-conformal PML method is an easily implementable conformal PML implementa-
tion, to the problem of mesh truncation in the FEM. The most distinguished feature of the method is its simplicity and
flexibility to design conformal PMLs over challenging geometries, especially those with curvature discontinuities, in a
straightforward way without using artificial absorbers. The method is based on a special complex coordinate transforma-
tion which is ‘locally-defined’ for each point inside the PML region. The method can be implemented in an existing FEM
software by just replacing the nodal coordinates inside the PML region by their complex counterparts obtained via com-
plex coordinate transformation. We first introduce the analytical derivation of the locally-conformal PML method for the
FEM solution of the two-dimensional scalar Helmholtz equation arising in the mathematical modeling of various steady-
state (or, time-harmonic) wave phenomena. Then, we carry out its numerical performance analysis by means of some
Monte Carlo simulations which consider both the problem of constructing the two-dimensional Green’s function, and
some specific cases of electromagnetic scattering.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The finite element method (FEM) is a numerical method developed for the approximate solution of boundary
value problems governed by partial differential equations, arising in various fields of science and engineering
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(such as elasticity, electromagnetics, mechanics, acoustics, seismology and geophysics). The method is of great
interest for scientists and engineers due to its flexibility in modeling complicated problems defined on spatial
domains having irregular boundaries and arbitrary domain properties. The most distinctive feature of the
FEM is the decomposition of a given domain into a set of simple domains, called finite elements. The compu-
tational domain (i.e., the FEM mesh) is then considered as an assembly of these elements connected at a finite
number of preselected points, called nodes. Over each element, an approximation to the solution is expressed as
a linear combination of nodal values and approximation functions (i.e., shape functions). Then, the local alge-
braic relations are derived among the nodal values of the solution over each element, and assembled to obtain
the global equation system whose solution yields the nodal values of the unknown function.

In the numerical modeling of several problems, especially wave propagation problems arising in the above
mentioned fields, the physical domain extends to infinity. Electromagnetic radiation or scattering, acoustic
wave propagation, seismic wave propagation and elastic wave propagation are examples of some application
areas, where wave propagation occurs in unbounded domains. In order to employ the FEM to the solution of
such problems involving spatially unbounded domains, the physical domain must be truncated by an artificial
boundary or layer to achieve a bounded computational domain. A popular approach to the mesh truncation
problem is the introduction of a reflectionless absorbing layer, which is called the perfectly matched layer
(PML), at the outer boundary. The PML concept has been first introduced by Berenger [1] in the context
of the finite difference time domain method (FDTD) for the numerical approximation of problems governed
by Maxwell’s equations. Berenger’s PML is based on a split-field formulation of Maxwell’s equations in Carte-
sian coordinates, and yields non-Maxwellian fields within the PML domain. In the context of time-harmonic
wave propagation, the PML approach is basically the truncation of the computational domain by an artificial
layer which absorbs outgoing plane waves irrespective of their frequency and angle of incidence, without any
reflection. The most attractive feature of the PML is the ability to minimize the white space due to its close
proximity and conformity to the surface of the object.

Following the introduction of the PML in the FDTD method, the PML concept has been used extensively
in FDTD applications [2–4]. A major step, which may be considered as a touchstone to start the implemen-
tation of the PML in the FEM simulations, is achieved by Sacks et al. [5], who constructed a Maxwellian PML
in Cartesian coordinates as an ‘anisotropic layer’ with appropriately defined permittivity and permeability ten-
sors. The anisotropic PML concept, originally introduced in Cartesian coordinates, has been extended to
cylindrical and spherical coordinates [6], and has been used in the design of conformal PMLs using a local
curvilinear coordinate system [7]. The PML approach, based on either the Berenger’s formulation or the
anisotropic formulation, has been successfully applied in many other fields, e.g. acoustics [8,9]; elasticity
[10,11]; linearized Euler equations [12,13]; eddy current problems [14]; and wave propagation in poroelastic
media [15].

Another formulation, yielding a PML action, has been introduced by Chew and Weedon [16] for use in the
FDTD method. This non-Maxwellian approach is implemented via the concept of complex coordinate stretch-
ing, which is essentially the analytical continuation of the field variables to complex space. However, in FEM
applications, a PML realized by complex coordinate stretching has been interpreted as an anisotropic PML in
cylindrical, spherical [17], and curvilinear coordinates [18]. This is achieved through the mapping of the non-
Maxwellian fields obtained during the complex coordinate transformation to a set of Maxwellian fields in an
anisotropic medium representing the PML.

All of the previous PML realizations in FEM literature employ artificial absorbing materials and utilize a
local/nonlocal coordinate system in order to design the PML as an ‘anisotropic medium’ having suitably
defined constitutive parameters. However, in this paper we present an analysis of the new ‘‘locally-conformal
PML’’ approach, which does not need any artificial materials or coordinate system, for mesh truncation in
FEM applications (clearly, the method is non-Maxwellian in the context of electromagnetics, since the avoid-
ance of artificial material layers leads to field expressions that do not satisfy Maxwell’s equations). Although
we have previously introduced the underlying concept of this approach in [19] for the solution of three-dimen-
sional electromagnetic vector wave equation using edge elements, we have dealt with only the far-field perfor-
mance of this method in terms of the radar cross section (RCS) calculations. It is evident that the smoothing
effect of the far-field calculation may result in a reduction in the magnitude of errors present in the near field
terms. In this paper, therefore, we perform an extensive numerical investigation of the near-field accuracy of
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the proposed method using the Monte Carlo simulation technique for the solution of two-dimensional (2D)
scalar Helmholtz equation using nodal elements. It is well known that, various problems related to steady-
state oscillations (mechanical, acoustical, thermal, electromagnetic) lead to the 2D Helmholtz equation. In
other words, the scope of the Helmholtz equation is broad due to its relationship to the wave equation in sinu-
soidal steady-state. Therefore, although the analysis of the method is presented in conjunction with problems
in electromagnetism, the proposed method is applicable in the above mentioned areas in a straightforward
manner.

The locally-conformal PML method is based on a ‘‘locally-defined’’ complex coordinate transformation.
Although the concept of coordinate transformation has long been utilized in the context of PMLs, the true
novelty in the locally-conformal PML method is the ‘definition of the transformation’, which is locally-defined
and which does not explicitly depend on the differential geometric properties of the PML-free space interface.
In other words, the locally-conformal PML utilizes a special type of complex coordinate stretching, which dif-
fers from all previous coordinate transformations in FEM literature. The locally-conformal PML has some
vital practical advantages from the point of view of the easy design of PMLs having challenging geometries,
especially having some intersection regions or abrupt changes in curvature. Although the anisotropic PML has
been used in the ‘conceptual’ design of conformal PMLs via a local coordinate system [7,18], this approach
exhibits some difficulties in terms of the computational and analytical effort, especially for the implementation
of the PML in the case of curvature discontinuities. Likewise, a majority of PML realizations in numerical
FEM applications have been implemented in a rectangular or circular PML domain, which does not have
arbitrary curvature discontinuities. The major advantage of the present approach is its flexibility to design
a conformal PML domain which encloses an arbitrarily-shaped convex spatial domain. Such conformal
PML domains are very crucial especially in wave propagation problems, where the minimization of the white
space is essential in order to save on the computational supply (such as memory and processing power).

In the locally-conformal PML method, the analytic continuation of the frequency-domain waves to com-
plex space, via the complex coordinate transformation, yields a PML region which absorbs outgoing waves
without any reflection. The locally-conformal PML is designed in complex space by just replacing the real
coordinates with their complex counterparts calculated in terms of the special complex coordinate transforma-
tion. Its implementation is simply based on the parametric representation of the complex coordinate transfor-
mation defined in terms of only a few parameters, which are easily derived from the node coordinates in an
existing FEM mesh using some very simple search techniques. In this formulation, the weak variational form
of the governing differential equation is derived in terms of the complex coordinates. Then, the weak varia-
tional form of the differential equation is discretized using the complex elements (i.e., elements with complex
nodal coordinates). In other words, the elements in the real coordinate system are mapped to the complex ele-
ments in complex space, through the complex coordinate stretching. Since the algebraic equations related to
the FEM formulation in PML region depend directly on the nodal coordinates, the replacement of the node
coordinates with the complex coordinates is sufficient to achieve the realization of the locally-conformal PML.

The structure of this paper is as follows: In Section 2, we briefly derive the equations governing the para-
metric construction of the locally-conformal PML method designed over an arbitrarily-shaped convex spatial
domain. Section 3 formulates the FEM in complex PML space using triangular isoparametric elements for the
solution of the 2D scalar Helmholtz equation in complex space. In Section 4, we present several numerical
applications involving both the problem of constructing the 2D free-space Green’s function and the electro-
magnetic scattering problem, in order to illustrate the near-field accuracy of the locally-conformal PML
approach in the FEM mesh truncation. In the construction of the 2D Green’s function, we utilize the Monte
Carlo simulation technique for the purpose of more reliable numerical performance analysis of the locally-
conformal PML method. Finally, we draw some conclusions in Section 5.

2. Parametric construction of the locally-conformal PML method

The locally-conformal PML method is based on a locally-defined complex coordinate transformation [19].
As a starting point of the technique, we spatially construct the PML region (XPML) as conformal to an arbi-
trary source volume containing sources of waves and obstacles. The source volume can be chosen as the con-
vex hull (i.e., the smallest convex set that encloses the sources and obstacles) to minimize the computational
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domain. For the sake of illustrating the method, we consider the geometries in Fig. 1 which represent arbitrary
partial cross-sections of the PML region enclosed within the boundaries oXin and oXout.

In the locally-conformal PML method, we define the complex coordinate transformation, which maps each
point P in XPML to eP in complex PML region C � C2, as follows [19] (assuming a suppressed time-dependence
ejxt):
Fig. 1.
~~r ¼~r þ 1

jk
f ðnÞn̂ðnÞ; ð1Þ
where~r 2 R2 and ~~r 2 C2 are the position vectors of the points P in real space and eP in complex space, respec-
tively; k = x/t represents the wave number (x is the angular frequency, t is the velocity of propagation); n is
the parameter defined by n ¼ k~r �~rink; and~rin 2 oXin is the position vector of the point Pin located on oXin

(see Fig. 1), which is the solution of the minimization problem: min~rin2oXin
k~r �~rink which yields a unique~rin

because oXin is the boundary of the convex set, and which can be simply performed by using some search tech-
niques in the mesh coordinates of the existing FEM program. Furthermore, n̂ðnÞ is the unit vector defined by
n̂ðnÞ ¼ ð~r �~rinÞ=n, and f(n) is a monotonically increasing function of n as follows:
f ðnÞ ¼ anm

mk~rout �~rinkm�1
; ð2Þ
where a is a positive parameter, m is a positive integer (typically 2 or 3) related to the decay rate of the mag-
nitude of the wave inside XPML, and~rout is the position vector of the point Pout which is basically the inter-
section of the line passing through ~r and ~rin (i.e., the dotted line in Fig. 1) and oXout. In Eq. (2),
k~rout �~rink represents the local PML thickness (dPML) for the corresponding PML point. The exponents in
Eq. (2) are chosen in such a way that m is in the numerator and m � 1 is in the denominator, because of pos-
sible simplifications in the derivative terms of the Jacobian matrix appearing in the complex coordinate trans-
formation. The transformation in Eq. (1) induces a smooth exponential decay of the transmitted wave inside
XPML along the direction of the unit vector, provided that the values of the PML parameters (dPML, a and m)
are chosen properly, as demonstrated numerically in Section 4.2.1. More explicitly, Eq. (1) in conjuction with
Eq. (2) meets the following three conditions which should be satisfied for a successful PML realization:

(i) the outgoing wave in the neighborhood of the point Pin must be transmitted into XPML without any
reflection,

(ii) the transmitted wave must be subject to a monotonic decay within XPML,
(iii) the magnitude of the transmitted wave must be negligible on oXPML.

In the Appendix, we demonstrate that these conditions are satisfied for a scalar outgoing wave under the
coordinate transformation given in Eq. (1).

It is evident that the calculation of the PML parameters appearing in Eq. (1) is local in the sense that each
PML point has its own parameters depending on its position inside the PML region. If the point~rin is located
on oXin whose curvature is continuous (see Fig. 1a), the unit vector n̂ðnÞ is obviously the unit vector which is
Locally-conformal PML implementation: (a) PML region with smooth curvature, (b) PML region with curvature discontinuity.
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normal to oXin. However, for PML points located inside the intersection region (close to the curvature discon-
tinuity) which is gray-shaded in Fig. 1b, the solution of the minimization problem results in the same value for
~rin. In both cases, the implementations of the transformation in Eq. (1) in an ordinary FEM program are iden-
tical owing to a single algorithm performing the task which replaces the real coordinates inside the PML
region with their complex counterparts calculated by the complex coordinate transformation in Eq. (1). Since
the coordinate transformation is locally-defined without using any coordinate system, the geometry of oXin is
not important for the application of the method and the transformation yields analytic continuity even in the
case of curvature discontinuities on oXin.

It should be obvious that the definition of the complex coordinate stretching in Eq. (1) is not arbitrary, and
should satisfy some certain criteria [enumerated by (i), (ii), (iii) above] for an efficient PML design. One can
claim that other complex coordinate transformations can also be defined similarly for the PML design. For
example, if we define the stretching operation as shown in Fig. 2 by omitting the minimization problem
and calculating the PML parameters according the unit vector ân emanating from a center point Pc in the
direction of the PML point, then this complex coordinate transformation fails (i.e. the resulting PML design
is not successful) when h > 45� [20]. Thus, the transformation in Eq. (1) in the locally-conformal PML method
is a specifically-defined complex stretching operation to design effectively a PML domain which encloses an
arbitrarily-shaped convex spatial domain.

Classical cartesian and cylindrical PML approaches in FEM literature which are usually realized in the
design of PMLs over rectangular and circular regions, respectively, are actually the special cases of
the locally-conformal PML method in terms of the complex coordinate transformation. For instance, if the
PML region surrounds a rectangular spatial domain as shown in Fig. 3a, the classical cartesian PML
approach considers the following definition of the transformation:
~x ¼ xþ a
jk
ðx� xinÞ; ~y ¼ y ðin region IÞ; ð3aÞ

~y ¼ y þ a
jk
ðy � yinÞ; ~x ¼ x ðin region IIÞ; ð3bÞ

~x ¼ xþ a
jk
ðx� xinÞ; ~y ¼ y þ a

jk
ðy � y inÞ ðin region IIIÞ: ð3cÞ
Fig. 2. Modified locally-conformal PML implementation with respect to a center (fails when h > 45�).

Fig. 3. Classical PML implementations requiring constant coordinate surfaces: (a) cartesian PML; (b) cylindrical PML.
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Similarly, if the PML region surrounds a circular spatial domain as shown in Fig. 3b, the classical PML ap-
proach in cylindrical coordinates defines the following transformation:
~r ¼ r þ a
jk
ðr � rinÞ: ð4Þ
Hence, it should be obvious that the locally-conformal PML method, whose parameter m is 1, reduces to
the classical PML approach in such PML regions. However, the classical PML approaches fail if the PML
domain encloses an arbitrarily-shaped domain, because inner and outer PML surfaces must be defined on
‘constant coordinate surfaces’ in these approaches. The locally-conformal PML method remedies this bot-
tleneck and can handle arbitrarily-defined PML surfaces. It is worth to mention that although the outer
PML surface is designed as conformal to the inner PML surface as shown in Fig. 1, the geometry of the
outer PML surface need not be the same as the inner PML surface. If, for instance, the inner PML sur-
face is designed over a triangular domain, the geometry of the outer PML surface may be elliptical. Thus,
the locally-conformal PML method provides a great flexibility in the design of arbitrarily-shaped PML
regions.

3. Helmholtz equation in complex space

In the locally-conformal PML approach, the scalar Helmholtz equation is modified through the complex
coordinate transformation in Eq. (1). That is, the homogeneous Helmholtz equation in complex space is
expressed as
er2ucð~~rÞ þ k2ucð~~rÞ ¼ 0; ð5Þ

where ucð~~rÞ is the analytic continuation of the unknown function to complex space, and er is the nabla oper-
ator in the complex space and is given by
er ¼ ½J�1�T � r; ð6Þ

where J is the Jacobian tensor defined as (in 2D Cartesian coordinates)
J ¼ oð~x; ~y;~zÞ
oðx; y; zÞ ¼

o~x=ox o~x=oy 0

o~y=ox o~y=oy 0

0 0 1

264
375: ð7Þ
When we substitute Eq. (6) into Eq. (5), the partial differential equation in real coordinates is expressed as
½J�1�T � r
� �

� ½J�1�T � ruð~rÞ
� �

þ k2uð~rÞ ¼ 0; ð8Þ
where uð~rÞ is the unknown function in real coordinates.
Alternatively, it is known that the coordinate transformation in Eq. (1) changes the original medium into an

anisotropic medium ensuring that the Helmholtz equation is still satisfied in the transformed complex space
(i.e., Helmholtz equation is form-invariant under space transformations). That is, the free-space Helmholtz
equation under coordinate transformation is equivalent to the Helmholtz equation in a material medium with
the following tensor constitutive parameters [21]:
��e ¼ eK; ð9aÞ
��l ¼ lK; ð9bÞ
where e and l are the constitutive parameters of the original isotropic medium (k ¼ x
ffiffiffiffiffi
le
p

in electromagnet-
ics), and
K ¼ ðdet JÞðJ T � JÞ�1
: ð10Þ
For instance, in 2D where uð~rÞ ¼ Eðx; yÞ, the Helmholtz equation reduces to the following partial differential
equation:
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r � ðKsubruð~rÞÞ þ k2K33uð~rÞ ¼ 0; ð11Þ

where Ksub and K33 are the entries of K such that
K ¼
K11 K12 0

K21 K22 0

0 0 K33

264
375 and Ksub ¼

K11 K12

K21 K22

� �
: ð12Þ
In electromagnetics, the Helmholtz equation in anisotropic medium is expressed in terms of the constitutive
parameters of the medium (permittivity and permeability) which are given in Eq. (9). However, the formula-
tion in this section is also applicable for other types of waves, such as acoustical waves, because 2D acoustics
and electromagnetics in anisotropic media are exactly equivalent by means of the exact duality between the
two sets of parameters as follows [22]:
½q; k�1� $ ½l; e�; ð13Þ
where q is the fluid mass density and k is the fluid bulk modulus in acoustics.
An important observation is that the tensor in Eq. (10) is symmetrical, thus, the constitutive parameters in

Eq. (9) satisfy the following conditions:
��e ¼ ��eT; ð14aÞ
��l ¼ ��lT: ð14bÞ
On the basis of these conditions, the anisotropic PML medium is ‘reciprocal’, implying that the decay
characteristics of the waves traveling toward and away from the outer PML boundary must be identical
[23]. That is, although the waves decay monotonically when they are transmitted into the PML region,
their magnitude is still non-zero when they reach the outer boundary. Then, they are reflected from the
outer boundary and they travel in the opposite direction. As a result of reciprocity in the lossy PML med-
ium, the medium characteristics will not be depending on the direction of propagation, and it is guaran-
teed that the waves reflected from the outer boundary will continue to decay as they approach the inner
boundary. An effective PML design is based on the proper choice of the PML parameters yielding neg-
ligible field magnitudes after the ‘two-way’ propagation of the field components, before they enter the in-
ner computational domain.

3.1. Complex space FEM formulation

Although the partial differential equations in Eqs. (8) and (11) in real coordinates can be solved in a FEM
program by modifying the original FEM formulation in XPML, we prefer to consider the original form of the
Helmholtz equation in Eq. (5) in the complex space. In this section, we show that the FEM formulation con-
sidering the original form of the Helmholtz equation does not need to be modified in XPML. Since the algebraic
relations related to the FEM formulation are evaluated in terms of the nodal coordinates, we preserve the ori-
ginal FEM formulation, and we just replace the real coordinates in XPML by their complex counterparts cal-
culated via Eq. (1). In other words, the novelty in the following formulations is the implementation of the
complex space FEM using complex elements using the original Helmholtz equation.

As a first step, the weak form of the Helmholtz equation in Eq. (5) can be calculated using the method of
weighted residuals, and is given in complex space as
Z

XPML

erucð~~rÞ � erwcdX� k2

Z
XPML

ucð~~rÞwcdX ¼ 0; ð15Þ
where wc is a scalar weight function in complex space.
In FEM, we solve the weak form of the Helmholtz equation in Eq. (15) by discretizing the computational

domain using triangular elements. In the complex coordinate transformation, the triangular elements are
mapped to complex triangular elements (i.e., elements with complex node coordinates), as illustrated in
Fig. 4a.



Fig. 4. (a) Mapping of triangular elements to complex triangular elements; (b) isoparametric mapping in FEM formulation.
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Within each element, the unknown function is approximated as
uc;eð~~rÞ ¼
X3

i¼1

N ið~~rÞuc;e
i ; ð16Þ
where uc;e
i is the unknown function and Nið~~rÞ is the shape function for the ith node.

After substituting the expression in Eq. (16) into Eq. (15), we use the Rayleigh–Ritz approach where the
weight functions are chosen to be equal to the shape functions (i.e., wc ¼ N ið~~rÞ). Then, the weak form of
the Helmholtz equation becomes
Z

Xe
PML

er X3

i¼1

N ið~~rÞuc;e
i

 !
� erNjð~~rÞdX� k2

Z
Xe

PML

X3

i¼1

N ið~~rÞuc;e
i

 !
N jð~~rÞdX ¼ 0 ðj ¼ 1; 2; 3Þ: ð17Þ
From Eq. (17), we construct a 3 · 3 local matrix whose ijth entry is given by
ae
ij ¼

Z
Xe

PML

½ erNið~~rÞ� � ½ erNjð~~rÞ�dX� k2

Z
Xe

PML

Nið~~rÞN jð~~rÞdX: ð18Þ
The integration in Eq. (18) is not performed directly in terms of the global coordinates, but the element is
mapped to a master element in local coordinates using the ‘‘isoparametric mapping’’ (see Fig. 4b). In this map-
ping, both the global coordinates and the unknown function are expressed in terms of the same shape
functions.

In each local element, the scalar shape functions are defined as [24]
N 1 ¼ 1� t� g; ð19aÞ
N 2 ¼ t; ð19bÞ
N 3 ¼ g: ð19cÞ
Using the isoparametric mapping, the coordinate variable variations are expressed in terms of the scalar
shape functions and the global node coordinates (in Cartesian coordinates) as follows:
~x ¼
X3

i¼1

~xiN iðt; gÞ; ð20aÞ

~y ¼
X3

i¼1

~yiN iðt; gÞ: ð20bÞ
The unknown function is also expressed as follows:
uc;eðt; gÞ ¼
X3

i¼1

N iðt; gÞuc;e
i : ð21Þ
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Using the expressions in Eq. (20), the Jacobian matrix is calculated as
J FEM ¼
o~x=ot o~y=ot

o~x=og o~y=og

� �
¼

~x2 � ~x1 ~y2 � ~y1

~x3 � ~x1 ~y3 � ~y1

� �
: ð22Þ
The expression in Eq. (22) shows that the entries of the Jacobian matrix are constant, and depend on only the
node coordinates.

Then, using Eqs. (19)–(22), the ae
ij expression in Eq. (18) becomes
ae
ij ¼

Z
Xem

PML

½ erN iðt; gÞ� � ½ erNjðt; gÞ� detðJ FEMÞdtdg� k2

Z
Xem

PML

N iðt; gÞN jðt; gÞ detðJ FEMÞdtdg: ð23Þ
In order to evaluate Eq. (23), we need to calculate erNiðt; gÞ expression, which simply depends on the ert anderg terms. The components of these terms are entirely determined by the inverse of the Jacobian matrix in Eq.
(22), whose entries are given in terms of global node coordinates, as follows:
ot
o~x
¼ ½J�1

FEM�1;1;
ot
o~y
¼ ½J�1

FEM�2;1;
og
o~x
¼ ½J�1

FEM�1;2;
og
o~y
¼ ½J�1

FEM�2;2; ð24Þ
where ½J�1
FEM�i;j is the ijth entry of the inverse Jacobian matrix.

The formulation in this section shows that the ae
ij expression in Eq. (23), which is the ijth entry of the local ele-

ment matrix, is evaluated in terms of the nodal coordinates. Consequently, the FEM formulation can easily be
implemented in the complex space by using the complex-valued node coordinates obtained via the complex coor-
dinate transformation. Although the evaluation of the ae

ij expression in terms of the nodal coordinates is given for
triangular elements, similar derivations are obviously possible for other types of elements (e.g., quadrilateral).
4. Performance analysis via Monte Carlo simulations

In this section, we report the results of some numerical experiments to test the accuracy of the locally-con-
formal PML method in two different problems:

(i) Problem of constructing the free-space Green’s function for Helmholtz equation with different source
positions in a given domain.

(ii) 2D TMz electromagnetic scattering problem involving a single infinitely-long cylindrical PEC (perfect
electric conductor) obstacle with an arbitrary cross-section.

All simulations are performed using our 2D FEM software employing isoparametric triangular elements.
The first problem (see Fig. 5a), which is the construction of the 2D free-space Green’s function, is governed

by the Helmholtz equation as given below:
r2uð~rÞ þ k2uð~rÞ ¼ �dð~r �~rsÞ: ð25Þ
The analytical solution of Eq. (25) is given by [25]
uanalyticð~rÞ ¼ ðj=4ÞH ð2Þ0 ðkj~r �~rsjÞ; ð26Þ
where H ð2Þ0 is the Hankel function of the second kind of zeroth order, and~rs is an arbitrary location of a point
source inside XPS. We solve Eq. (25) by converting it into the homogeneous Helmholtz equation with a Dirich-
let type boundary condition (BC) as follows:
r2uð~rÞ þ k2uð~rÞ ¼ 0; ð27aÞ
with BC : uð~rÞ ¼ uanalyticð~rÞ on oXPS: ð27bÞ
In PML region XPML, Eq. (5), which is actually equivalent to Eq. (27a) in the complex space, is solved simply
by interchanging the real coordinates in XPML by their complex counterparts calculated by Eq. (1), and pre-
serving the original form of the Helmholtz equation.



Fig. 5. General models of the two problems under consideration: (a) problem of constructing the 2D free-space Green’s function, (b) 2D
TMz electromagnetic scattering problem.
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The reason of our choice of Eq. (25) as our model problem in error analysis is closely related to the linearity
and space-invariance of problems governed by Helmholtz equation in free space. It is well known that any
source function gð~rÞ (excitation or forcing function) inside a given domain can be represented as a convolution
integral with impulses. In this case, Helmholtz equation is expressed as
r2uð~rÞ þ k2uð~rÞ ¼ �
Z

Xg

gð~rsÞdð~r �~rsÞd~rs; ð28Þ
where Xg = supp(g). This result implies that the error analysis of the solution of Eq. (25) is critical for arbitrary

locations of the impulses. Therefore, in the simulation phase of the first problem, we calculate the error sta-
tistics by choosing~rs as a ‘random variable’ uniformly distributed in XPS. For this purpose, we resort to the
‘Monte Carlo’ simulation technique in order to get more reliable and robust results, because the accuracy of
the method may depend on the position of the point source inside XPS. In the Monte Carlo simulation tech-
nique, which is a stochastic technique based on the use of random numbers and probability statistics to inves-
tigate the problems, we determine randomly ‘2000 different source positions’ inside XPS, and we run the FEM
program 2000 times using these source positions. Then, for each run, we calculate two different kinds of mean-
square error criteria in X as follows:
E1 ¼
P

Xjucalculated � uanalyticj2P
Xjuanalyticj2

ð�100Þ ð29Þ
and
E2 ¼
P

XjLucalculated � Luanalyticj2P
XjLuanalyticj2

ð�100Þ; ð30Þ
where ucalculated and uanalytic are the calculated and analytical values in X, respectively, and L represents the
operator if the original boundary problem can also be modeled as Lu = f in general. The operator L basically
represents the resultant global matrix in the FEM formulation. The error in Eq. (30) is also known as ‘model
error’, ‘residual error’ or ‘projection error’ in the FEM literature, and accounts for especially the approxima-
tion of the solution and the domain (type and size of elements, mesh quality, etc.).

Afterwards, using these 2000 error values calculated by Eqs. (29) and (30) separately, (i) we plot the error scat-
ter contour which shows the error value at each source position, (ii) we plot the error histogram which shows the
distribution of the error values, and (iii) we calculate the error statistics (mean, variance, etc.). This process pro-
vides a global way for the numerical performance analysis of the locally-conformal PML method in the solution
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of the first problem by yielding more robust (i.e. independent of source position) analysis results. We expect that
the locally-conformal PML method yields acceptable error values irrespective of the source position, implying
that an arbitrary source function gð~rÞ inside XPS can be reliably handled by the method.

The second problem (see Fig. 5b), which is the 2D TMz electromagnetic scattering problem involving a sin-
gle infinitely-long cylindrical PEC obstacle, is solved by the homogeneous Helmholtz equation with a Dirichlet
type boundary condition (BC) for PEC obstacles, as follows:
r2Es
z þ k2Es

z ¼ 0 in X; ð31aÞ
with BC : Es

z ¼ �Einc
z on oXS; ð31bÞ
where Es
z stands for the z-component of the scattered field. In this problem, we measure the performance of the

locally-conformal PML method by comparing; (i) the current density ð~J ¼ azJ zÞ along the boundary of the
obstacle (near-field analysis), and (ii) the RCS profile as a function of the aspect angle (i.e., the angle between
the x-axis and the direction of observation), with those calculated by the Method of Moments (MoM) ap-
proach. As a remark, the MoM is also a numerical method, introduced by Harrington [26], to solve the inte-
gral equations arising in scattering and radiation problems in electromagnetics. In the MoM, the boundary of
the cylindrical obstacle (oXS) is decomposed into a finite number of line segments, and the unknown current
density is approximated on these segments using locally-defined basis functions. After solving for the current
density over this boundary, the scattered field is calculated in terms of the radiation integrals.

The scattering problem expressed in Eq. (31) is actually equivalent to the following Helmholtz equation:
r2Es
z þ k2Es

z ¼ jxl
I

oXs

J zð~r0Þdð~r �~r0Þd~r0: ð32Þ
It is evident that the sources of Es
z are located on oXs. Thus, the scattering problem may be interpreted as the prob-

lem given in Eq. (28) where the source function gð~rÞ is restricted on the boundary of the domain oXPS. In this way,
the scattering problem provides an opportunity to consider sources equidistant from the PML interface.

By analogy to the scattering problem, the Monte Carlo simulation of the first problem (viz., Green’s func-
tion) may also be performed by restricting the random variable~rs on a boundary oXMC which is located equi-
distantly and very close to oXPS within the domain XPS. This case (as well as the scattering problem case) may
be regarded as the ‘worst case’ where the distance between each source point and the PML interface in the
vicinity of the source point is smallest. Similar to the above-mentioned phases of the Monte Carlo simulation,
we present the error statistics by choosing 2000 different source positions along the boundary oXMC.

In the following, the three sections are categorized with respect to the mesh structure of the computational
domain, because, in each section, the same mesh structure is employed in the solution of both problems, but
with different interpretations. That is, in the first problem, the mesh of the whole computational domain XC,
which is of the cylindrical shell geometry, is assumed to be constructed conformally over a region XPS having a
point source inside (see Fig. 5a). However, in the second problem, the mesh of XC is assumed to be constructed
conformally over a PEC obstacle (see Fig. 5b). Therefore, in each section, we first report the Monte Carlo
simulation results of the first problem (i.e., Green’s function) for a given geometry. Then, we demonstrate
the results of the second problem (i.e., scattering problem) for the same geometry.

In the experiments below, we consider some ‘computationally difficult’ geometries in order to illustrate the
performance of the locally-conformal PML approach in handling these cases. The common parameters in all
experiments are chosen as (unless otherwise stated): k is 20p (i.e., the wavelength k is 0.1 m), m is 3, and a is
chosen in the range between 7k and 10k. In addition, the PML thickness is approximately set to k/4, and the
edge size of each triangular element in the mesh is approximately adjusted to k/60. In all experiments, almost
the same approach is followed to present the results (i.e., the order and the format of the plots, etc.) for the
sake of uniformity.
4.1. Conformal PML over an elliptical domain

In the first example, the free-space region X is designed conformally over an elliptical domain, and the PML
region XPML is constructed as conformal to X. The semi-major axis of the inner boundary of the elliptical shell
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(oXS or oXPS) is 2k, and the axial ratio is set to 2. All distance parameters (such as the PML thickness and the
distance between the sources and oXPS) can be visualized in Figs. 6 and 7.

In the realization of the Monte Carlo technique for the first problem assuming that the random variable
(i.e., source position~rs) is uniformly distributed in XPS, we plot the error scatter plot in Fig. 6a, and the error
histogram in Fig. 6b for E1. Similarly, we plot the error scatter plot in Fig. 6c, and the error histogram in
Fig. 6d for E2. We also show some statistical error values (i.e., mean, variance, etc.) on the plots in Fig. 6b
and d.

As a special case of the previous simulation, we assume that the random variable is restricted on a bound-
ary oXMC which is located equidistantly and very close (�k/10) to oXPS within the domain XPS. Then, we plot
the error scatter plots in Fig. 7a and b for E1 and E2, respectively, together with the error statistics.

For the second problem which is the electromagnetic scattering problem, we plot the magnitude of the cur-
rent density along the boundary of the elliptical obstacle and the RCS profile in Fig. 8a and b, respectively. We
assume that the angle of incidence of the plane wave is 180� (with respect to the x-axis).
Fig. 6. Error analysis in the Monte Carlo simulation of the free-space Green’s function in elliptical domain: (a) error scatter plot for E1;
(b) error histogram and statistics for E1; (c) error scatter plot for E2; (d) error histogram and statistics for E2.



Fig. 7. Monte Carlo simulation restricted to oXMC which is located close to oXPS [elliptical domain]: (a) error scatter plot for E1; (b) error
scatter plot for E2.

Fig. 8. Scattering problem involving infinitely-long elliptical PEC cylinder: (a) magnitude of current density along the obstacle boundary;
(b) RCS profile.
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4.2. Conformal PML over a triangular_plus_halfcircular domain

In this example, a conformal PML is designed over a triangular_plus_halfcircular domain. The radius of
the inner boundary of the shell (oXS or oXPS) is 1.6k, and the triangle (nose) angle is 90�. All distance param-
eters can be visualized in Figs. 9 and 10.

For the Monte Carlo simulation of the first problem assuming that the random variable is uniformly dis-
tributed in XPS, we plot the error scatter plots and error histograms in Fig. 9 for both E1 and E2. Then, assum-
ing that the random variable is restricted on oXMC, we again perform the Monte Carlo simulation and we plot
the error scatter plots in Fig. 10.

In addition, in order to better visualize the wave behavior inside the PML region, we place a ‘single’ point
source close to the right corner of the boundary oXPS. Then, we plot the magnitude and phase of the Green’s



Fig. 9. Error analysis in the Monte Carlo simulation of the free-space Green’s function in triangular_plus_halfcircular domain: (a) error
scatter plot for E1; (b) error histogram and statistics for E1; (c) error scatter plot for E2; (d) error histogram and statistics for E2.
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function along the x-axis in Fig. 11. The magnitude plot proves that the magnitude of the function decays
smoothly inside the PML region, regardless of the distance between the source position and the PML
interface.

For the second problem, the magnitude of the current density along the boundary of the obstacle and the
RCS profile are plotted in Fig. 12a and b, respectively, for the infinitely-long PEC cylindrical obstacle. The
angle of incidence of the plane wave is set to 90� (nose-on incidence).

4.2.1. Analysis of the PML parameters

In this section, we demonstrate the effect of the PML parameters (dPML, a and m) on the performance of
the PML by running several Monte Carlo simulations using the same source positions in Fig. 9 in a triangu-
lar_plus_halfcircular domain. Since this particular geometry includes variations in interface curvatures, as
well as curvature discontinuities, it is taken as a test problem to examine the dependence of PML performance
on the design parameters of the PML. First, we tabulate the mean values of E1 and E2 as a function of the
PML thickness dPML in Table 1, by keeping the values of a and m fixed (a = 10k and m = 3) in all cases. As
shown in this table, the error decreases as the PML thickness increases, because the reflections from the outer
boundary oXout decrease owing to the increase in dPML. At the extreme case, there is no reflected wave if the
PML region extends to infinity. If dPML is ‘large’ enough, then the error values E1 and E2, which are calcu-
lated with respect to the analytical results, include only the finite element discretization errors, but not the



Fig. 10. Monte Carlo simulation restricted to oXMC which is located close to oXPS [triangular_plus_halfcircular domain]: (a) error scatter
plot for E1; (b) error scatter plot for E2.
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reflection errors. In Table 1, the decay in E1 and E2 is fast up to dPML = k, and is almost negligible after this
distance. Therefore, we can assert that the reflection error for dPML = 2k is almost zero, and the small error
values of E1 and E2 in this case are due to the discretization errors. In order to eliminate the error contribu-
tion due to discretization, we may set the case where dPML = 2k to be the ‘‘reference’’ case, and define a new
error criterion as follows:
E3 ¼
P

Xjucalculated � ureferencej2P
Xjureferencej2

ð�100Þ; ð33Þ
where ureference is the reference field values in X calculated by setting dPML=2k, and ucalculated is the calculated
field values in X for an arbitrary value of dPML < 2k. Then, we tabulate E3 values in Table 1. We observe that
E3 values are less than E1 values due to the elimination of discretization errors. In conformity to the above
discussion, the error decays as dPML increases. However, this table reveals that the error values can be consid-
ered at an acceptable level even for electrically thin PML regions.

Second, we calculate the mean values of E1 and E2 as a function of the parameter a for two different dPML

values (dPML = k/4 and dPML = k/8), by keeping the value of m fixed (m = 3). Then, we plot the error values
using a logarithmic scale in Fig. 13a and b for dPML = k/4 and dPML = k/8, respectively. We can conclude from
these plots that the value of a should be large enough to attain a negligible field value on the outer PML
boundary. However, if a much larger value of a is chosen, the results start to deteriorate because the coordi-
nate transformation in Eq. (1) yields deformations in the nodal coordinates due to very large imaginary parts.
In other words, the shape of the mesh elements in complex space becomes poor in quality due to the improp-
erly transformed coordinates. This may cause ill-conditioning in the global matrix equation, yielding inaccu-
rate analysis results. Hence, the optimal value of a should be essentially determined for a successful PML
realization. However, the choice of a is not generally a difficult task because it may be chosen over a wide
interval, as shown in Fig. 13, depending on the PML thickness. Practically, 5k 6 a 6 15k yields reliable results
for a PML thickness between k/4 and k/2. As the PML thickness decreases, a relatively larger value of a can be
employed to achieve a more successful PML design.

Finally, we tabulate the mean values of E1 and E2 as a function of the parameter m in Table 2, by keeping
the values of a and dPML fixed (a = 10k and dPML = k/4) in all cases. We conclude from this table that m can
typically be chosen as 2 or 3 in order to achieve a smooth decay inside the PML region, because the value of m

determines the decay profile (or decay rate) inside the PML region. If m increases, the waves are forced to
decay very slowly in regions close to the inner PML boundary oXin, and the decay rate increases sharply close



Fig. 11. Green’s function along the x-axis in triangular_plus_halfcircular domain [a single point source is located close to the right corner
of the domain]: (a) magnitude; (b) phase.
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to the outer PML boundary oXout, due to the behavior of the exponential function in Eq. (2), which exhibits
slow growth at points close to oXin and a much faster growth rate close to oXout.

4.3. Conformal PML over a quadrilateral domain

The next example is a conformal PML designed over a quadrilateral domain. The vertex coordinates of the
inner boundary of the shell (oXS or oXPS) are (in terms of k): vertex 1: (�2,2), vertex 2: (�4,�2), vertex 3:
(4,�4) and vertex 4: (10,4), in Cartesian coordinates.

For the Monte Carlo simulation of the first problem assuming that the random variable is uniformly dis-
tributed in XPS, we plot the error scatter plots and error histograms in Fig. 14 for E1 and E2. For the Monte
Carlo simulation with random variable restricted on oXMC, we plot the error scatter plots in Fig. 15.



Fig. 12. Scattering problem involving infinitely-long triangular_plus_halfcircular PEC cylinder: (a) magnitude of current density along the
obstacle boundary; (b) RCS profile.

Table 1
Mean error values for different values of dPML (a = 10k and m = 3)

dPML E1 (%) E2 (%) E3 (%)

k/16 7.1034e�1 1.6775 7.0760e�1
k/8 6.0180e�2 1.5497e�1 5.9421e�2
k/4 2.1054e�3 5.2211e�3 2.0205e�3
k/2 1.3984e�4 2.6982e�4 4.0109e�5
3k/4 8.3918e�5 1.7085e�4 8.8977e�6
k 6.7296e�5 1.4204e�4 2.6532e�6
2k 5.5044e�5 1.2044e�4 (Reference)

Fig. 13. Error variations as a function of a for m = 3 in triangular_plus_halfcircular domain (log scale): (a) dPML = k/4, (b) dPML = k/8.
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For the second problem, the magnitude of the current density along the boundary of the obstacle and the
RCS profile are plotted in Fig. 16a and b, respectively, for the infinitely-long PEC cylindrical obstacle. The
angle of incidence of the plane wave is set to 180�.



Fig. 14. Error analysis in the Monte Carlo simulation of the free-space Green’s function in quadrilateral domain: (a) error scatter plot for
E1; (b) error histogram and statistics for E1; (c) error scatter plot for E2, (d) error histogram and statistics for E2.

Table 2
Mean error values for different values of m (dPML = k/4 and a = 10k)

m E1 (%) E2 (%)

1 6.1829e�1 1.6624
2 9.9935e�4 1.7193e�3
3 2.1054e�3 5.2211e�3
4 1.6573e�2 4.2746e�2
5 6.2999e�2 1.5905e�1
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The numerical experiments in this section demonstrate that the results calculated by the locally-conformal
PML method are sufficiently close to the reference results, and these examples prove that the locally-conformal
PML is an efficient absorber for the FEM mesh truncation having challenging geometries. We also conclude
from the error scatter plots that the error values (E1 or E2) are at an acceptable level irrespective of the position
of the point source. However, the error values get slightly higher close to the boundary of the region XPS, espe-
cially at the sharper edges of some geometries (such as quadrilateral). This observation is not surprising, since
the solution of Helmholtz equation in Eq. (25) becomes singular at the source location. In addition, it is known
that the sharp edges may have some effect on the accuracy of the results, compared to the smooth sections of the
geometry. In any case, due to the acceptable levels of error values at arbitrary source positions, we can assert
that any source function inside the domain can be reliably analyzed by the locally-conformal PML method.
Moreover, the numerical experiments show that the PML parameters (dPML, a and m) can be determined



Fig. 15. Monte Carlo simulation restricted to oXMC which is located close to oXPS [quadrilateral domain]: (a) error scatter plot for E1; (b)
error scatter plot for E2.

Fig. 16. Scattering problem involving infinitely-long quadrilateral PEC cylinder: (a) magnitude of current density along the obstacle
boundary; (b) RCS profile.
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properly in a straightforward manner in order to get a monotonic decay inside the PML region, and even thin
PML regions (with thickness in the order of a fraction of a wavelength) can provide reliable results.

5. Conclusions

In this paper, we have explored the numerical performance of the locally-conformal PML method for the
solution of 2D scalar Helmholtz equation by utilizing the Monte Carlo simulation technique and the FEM in
different configurations. We have demonstrated that the implementation of this method in a FEM code is
straightforward, and it makes possible the design of conformal PMLs for computational domains having arbi-
trary convex geometries. After interchanging the real node coordinates inside the PML region with the com-
plex counterparts obtained by the complex coordinate transformation, a successful PML design can be
achieved without altering the original FEM formulation.

Appendix

In this section, we demonstrate how the coordinate transformation in Eq. (1) guarantees the fulfillment of
the three conditions enumerated by (i, ii, iii) in Section 2 for a scalar wave. Let us first consider a typical plane
wave impinging on the PML/free-space interface (oXin) as follows:
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uð~rÞ ¼ exp½�jkâk �~r�; ðA:1Þ

where âk is the unit vector representing the direction of incidence. The wave in Eq. (A.1) may represent the z-
component of the electric field Ez in TMz case, or of the magnetic field Hz in TEz case in electromagnetic wave
propagation applications. It is worth mentioning that any outgoing wave can be locally represented as a super-
position of plane waves (i.e., local plane wave spectrum). Hence, the wave representation in Eq. (A.1) can be
conveniently employed as a sufficiently general case.

Under the coordinate transformation T : XPML! C defined by ~~r ¼ T ð~rÞ in Eq. (1) in Section 2, we obtain
the wave ~uð~~rÞ in XPML (i.e., analytic continuation of uð~rÞ to complex space) as follows:
~uð~~rÞ ¼ exp½�jkâk � ~~r�: ðA:2Þ
This result is a consequence of the form-invariance property of the Maxwell’s equations [21], as well as of the
scalar Helmholtz equation which can be derived from (2D) Maxwell’s equations, under coordinate transfor-
mations, as explained in Section 3. Then, using the transformation in Eq. (1), the expression in Eq. (A.2) can
be written explicitly as
~uð~~rÞ ¼ exp½�jkâk �~r� � exp½�f ðnÞâk � n̂ðP ; P 0Þ�
¼ uð~rÞ � exp½�f ðnÞâk � n̂ðP ; P 0Þ�:

ðA:3Þ
It is evident from Eq. (2) that f(n = 0) = 0 for ~r 2 oXin. Thus, uð~rÞ ¼ ~uð~~rÞ on the PML/free-space interface.
This result guarantees the continuity of the transmitted wave at the interface oXin, and thus satisfies the con-
dition (i).

As mentioned in Section 2, in f(n), n represents the ‘‘distance’’ from the PML point to the interface oXin. It
should also be noted that the definition of n is independent of the curvature of the interface as explained in
Section 2. Since f(n) is obviously a positive and monotonically increasing function of n, the expression
exp½�f ðnÞâk � n̂ðP ; P 0Þ� becomes a monotonically decreasing function of n (we note that âk � n̂ðP ; P 0Þ > 0 to
be in conformity with the assumption that the original wave is outgoing). This result ensures the monotonic
decay of the wave inside the PML region, hence satisfies the condition (ii).

As mentioned in Section 3, although the waves decay monotonically inside the PML region, their magni-
tude may still be non-zero when they reach the outer boundary oXout and they may be reflected from this
boundary. If the PML region has infinite extent, a reflected field is not observed due to the absence of an outer
boundary. However, the PML region must be truncated by an outer boundary to render the computational
domain finite. In order to satisfy the condition (iii) such that the magnitude of the transmitted wave must
attain a negligible value on oXout (i.e., exp½�f ðnÞâk � n̂ðP ; P 0Þ�jon oXout

� 0Þ, the PML parameters (dPML, a
and m) must be selected properly, as demonstrated numerically in Section 4.2.1.
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